Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 20(1): 46, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316913

RESUMO

BACKGROUND: Tooth morphology within theropod dinosaurs has been extensively investigated and shows high disparity throughout the Cretaceous. Changes or diversification in feeding ecology, i.e., adoption of an herbivorous diet (e.g., granivorous), is proposed as a major driver of tooth evolution in Paraves (e.g., Microraptor, troodontids and avialans). Here, we studied the microscopic features of paravian non-avian theropod and avialan teeth using high-spatial-resolution synchrotron transmission X-ray microscopy and scanning electron microscopy. RESULTS: We show that avialan teeth are characterized by the presence of simple enamel structures and a lack of porous mantle dentin between the enamel and orthodentin. Reduced internal structures of teeth took place independently in Early Cretaceous birds and a Microraptor specimen, implying that shifts in diet in avialans from that of closely related dinosaurs may correlate with a shift in feeding ecology during the transition from non-avian dinosaurs to birds. CONCLUSION: Different lines of evidence all suggest a large reduction in biting force affecting the evolution of teeth in the dinosaur-bird transition. Changes in teeth microstructure and associated dietary shift may have contributed to the early evolutionary success of stemward birds in the shadow of other non-avian theropods.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Dieta , Dinossauros/anatomia & histologia , Dente/ultraestrutura , Animais , Aves/fisiologia , Dinossauros/fisiologia , Fósseis , Herbivoria , Filogenia
2.
Sci Rep ; 5: 15202, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26512629

RESUMO

The relationship between tooth form and dietary preference is a crucial issue in vertebrate evolution. However, the mechanical properties of a tooth are influenced not only by its shape but also by its internal structure. Here, we use synchrotron transmission X-ray microscopy to examine the internal microstructures of multiple dinosaur teeth within a phylogenetic framework. We found that the internal microstructures of saurischian teeth are very different from advanced ornithischian teeth, reflecting differences in dental developmental strategies. The three-tissue composition (enamel-mantle dentin-bulk dentin) near the dentinoenamel junction (DEJ) in saurischian teeth represents the primitive condition of dinosaur teeth. Mantle dentin, greatly reduced or absent from DEJ in derived ornithischian teeth, is a key difference between Saurischia and Ornithischia. This may be related to the derived herbivorous feeding behavior of ornithischians, but interestingly, it is still retained in the herbivorous saurischian sauropods. The protective functions of mantle dentin with porous microstructures between enamel and bulk dentin inside typical saurischian teeth are also discussed using finite-element analysis method. Evolution of the dental modifications in ornithischian dinosaurs, with the absence of mantle dentin, may be related to changes in enamel characteristics with enamel spindles extending through the DEJ.


Assuntos
Evolução Biológica , Dentina/diagnóstico por imagem , Animais , Dentina/ultraestrutura , Dinossauros/classificação , Fósseis , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Filogenia , Porosidade , Radiografia , Síncrotrons , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...